

S.I.E.S College of Arts, Science and Commerce (Empowered Autonomous)

Sion(W), Mumbai – 400 022.

DEPARTMENT OF INFORMATION TECHNOLOGY

MSc (IT), SEMESTER I

Practical Journal 

For the Subject: -

Web Mining – I

Submitted by YOGESH CHATROORAM SAHU

FMIT2526179

For the Academic Year

2025-2026

S.I.E.S College of Arts, Science and Commerce (Empowered Autonomous)

Sion(W), Mumbai – 400 022.

CERTIFICATE

This is to certify that Mr. YOGESH CHATROORAM SAHU, of MSc [Information

Technology] Semester - I, Seat No. FMIT2526179 has successfully completed the

necessary course of experiments in the subject of Web Mining-I as a partial fulfilment

of the degree M.Sc. (I.T.) during the academic year 2025-2026.

Asst. Prof. In-Charge

MR. RAJESH YADAV

Examination date:

Examiner’s Signature & Date:

Signature of HOD

Sudha Bhagavatheeswaran College Seal Date:

INDEX

Practical.No. Title Signature

1 Write a program for Pre-processing of Text

Document

A1) Stop Word Removal.

 A2) Tokenization and Filtering.

2 Write a program to implement Boolean

retrieval model for the given document.

3 Write a program to implement Vector Space

Model and compute cosine Similarity

between a query and documents.

4 Write a program to detect spam keywords

(keyword stuffing) in web content using word

frequency analysis.

5 Write a program to perform Text

summarization using Extractive(LexRank) and

Abstractive (Transformers) methods.

6 Write a program to create an inverted index

for a collection of documents.

7 Write a program to identify opinion spam

in user reviews.

FMIT2526179

Practical No.1

Aim – Write a program for Pre-processing of a Text Document.

A1) To remove stopwords (stop word removal)

Description:

Stopwords are common words such as “is, the, in, and” which occur frequently in text but carry very

little meaning. Removing them helps reduce data size and improves the focus on important words.

• NLTK (Natural Language Toolkit): A Python library used for text processing tasks.

• corpus: A collection of datasets (like stopwords) provided by NLTK.

• set (): Converts a list of stopwords into a set for faster lookup and to avoid duplicates.

Code: -

import nltk

nltk.download('stopwords')

from nltk.corpus import stopwords

Load English stopwords

stop_words = set(stopwords.words('english'))

Display stopwords

print(stop_words)

Output: -

FMIT2526179

A2) To tokenize and filter out sentence

Description:-

Tokenization is the process of breaking text into smaller units called tokens (words). After

tokenization, stopwords are removed so that only meaningful words remain.

• word_tokenize(): Splits text into individual words.

• Filtering: Removes stopwords from the tokenized list.

• append(): Adds words to a list one by one.

Code :-

import nltk

nltk.download('punkt')

nltk.download('stopwords')

from nltk.corpus import stopwords

from nltk.tokenize import word_tokenize

example_sent = "This is a sample sentence, showing off the stop words filtration."

stop_words = set(stopwords.words('english'))

word_tokens = word_tokenize(example_sent)

Removed duplicate reinitialization

filtered_sentence = []

for w in word_tokens:

 if w not in stop_words:

 filtered_sentence.append(w)

print(word_tokens)

print(filtered_sentence)

Output:-

FMIT2526179

Practical No.02

Aim: write a program to implement boolean retrieval model for the

given example.

Example Documents:-

• Doc1: Information Retrieval has 2 models and information.

• Doc2: Boolean is a basic Information Retrieval classic model.

• Doc3: Information is a data that processed, Information.

• Doc4: When a Data Processed the result is Information, Data.

Query (Q): (𝐷𝑎𝑡𝑎 ∧ 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛) ∨ (¬𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙)

Description:

The Boolean Retrieval Model is one of the simplest retrieval models in Information

Retrieval. Documents are represented as sets of words (terms), and queries are expressed using

Boolean operators.

• Operators used:

o AND (∧) → Retrieves documents containing both terms.

o OR (∨) → Retrieves documents containing at least one of the terms.

o NOT (¬) → Excludes documents containing the specified term.

• Python concepts used:

o import re – Loads Python’s regular expression module, used for text pattern

matching.

o re.findall() – Finds all words (tokens) in a document by matching word

patterns.

o lower() – Converts text into lowercase to make search case-insensitive.

o set(docs.keys()) – Converts document keys into a set for easy logical operations.

o has_term() – A helper function that checks whether a word (term) exists in a

document.

FMIT2526179

Code:-

import re

docs = {

 1: "Information Retrieval has 2 models and information.",

 2: "Boolean is a basic Information Retrieval classic model.",

 3: "Information is a data that processed, Information.",

 4: "When a Data Processed the result is Information, Data."

}

All document IDs

all_docs = set(docs.keys())

Terms we are interested in

terms = ["information", "data", "retrieval"]

Function to check if a term exists in a document

def has_term(doc, term):

 words = set(re.findall(r'\w+', doc.lower()))

 return term in words

Collect documents containing each term

data_docs = set(i for i, doc in docs.items() if has_term(doc, "data"))

info_docs = set(i for i, doc in docs.items() if has_term(doc, "information"))

retrieval_docs = set(i for i, doc in docs.items() if has_term(doc, "retrieval"))

Evaluate query: (Data AND Information) OR (NOT Retrieval)

result = (data_docs & info_docs) | (all_docs - retrieval_docs)

print("Result for Query: (Data ^ Information) v (~ Retrieval)\n")

for i in sorted(result):

 print(f"Doc{i}:", docs[i])

Output:-

FMIT2526179

Practical No.03

Aim : Write a program to implement vector space model.

Description:

The Vector Space Model (VSM) is an important model in Information Retrieval. It

represents both documents and queries as vectors in a common vector space. The similarity

between a document and a query is calculated using Cosine Similarity.

1. Math Module – Provides mathematical functions like sqrt() which is used to

calculate vector length (magnitude).

2. Collections Module – Provides Counter, which counts word frequencies in

documents.

3. Vectorization – Each document or query is converted into a vector of term

frequencies.

4. Cosine Similarity Formula:

Cosine Similarity =
𝐴 ⋅ 𝐵

∣∣ 𝐴 ∣∣×∣∣ 𝐵 ∣∣

o A ⋅ B → Dot product of vectors A and B

o ||A||, ||B|| → Magnitude (length) of vectors

• If similarity = 1, the query and document are very similar.

• If similarity = 0, they are not similar.

FMIT2526179

Code :-

import math, collections

docs = ["A man and a woman.", "A baby."]

vocab = sorted(set(w.lower().strip('.,') for d in docs for w in d.split()))

def vectorize(text):

 c = collections.Counter(w.lower().strip('.,') for w in text.split())

 return [c[t] for t in vocab]

def cosine_sim(a, b):

 dot = sum(x * y for x, y in zip(a, b))

 mag_a = math.sqrt(sum(x * x for x in a))

 mag_b = math.sqrt(sum(y * y for y in b))

 return dot / (mag_a * mag_b) if mag_a and mag_b else 0

query = "woman"

q_vec = vectorize(query)

doc_num = 1

for doc in docs:

 sim = cosine_sim(vectorize(doc), q_vec)

 print("Doc", doc_num, "similarity:", round(sim, 3))

 doc_num += 1

Output :-

FMIT2526179

Practical no: 04

Aim : write a program for implementing web spamming.

Description:

1. Web Spamming:

Web spamming is the use of unfair techniques to manipulate search engine rankings

and attract more visitors. Common methods include:

• Keyword stuffing: Repeating important words too many times.

• Hidden content/links: Adding invisible text or links for search engines.

• Link farming: Creating fake backlinks to boost rankings.

• Deceptive content: Misleading users with irrelevant or low-quality material.

2. Collections Module:

Python’s collections module provides advanced data structures, making tasks like

counting words easier and faster.

3. Counter Class:

Counter counts the frequency of items in a list.

Example: ['apple', 'apple', 'banana'] → apple:2, banana:1

4. Regular Expressions (re):

The re module helps search for patterns in text efficiently. It can find words,

numbers, or email patterns without scanning manually.

FMIT2526179

CODE :-
from collections import Counter

import re

web_content = """Cheap watches available now! Best cheap watches for you.

Buy cheap watches online. Cheap cheap cheap watches watches!"""

Extract words (lowercase, ignore punctuation)

words = re.findall(r'\b\w+\b', web_content.lower())

Count word frequencies

keyword_counts = Counter(words)

Threshold for spam detection

SPAM_THRESHOLD = 4

Print frequencies

print("Keyword Frequencies:")

for word, count in keyword_counts.items():

 print(f"{word}: {count}")

Detect potential spam keywords

print("\nPotential Spam Keywords:")

for word, count in keyword_counts.items():

 if count >= SPAM_THRESHOLD:

 print(f"'{word}' appears {count} times (possible keyword stuffing)")

OUTPUT :-

FMIT2526179

Practical No:05

Aim : Write a program to implement summarization.

Theory :

1. Summarization:

Summarization is the process of condensing a large text into a shorter version while

keeping its main meaning. It helps quickly understand articles, reports, or research

papers. There are two main types:

• Extractive Summarization: Selects the most important sentences directly from

the text. Techniques like frequency counts or graph-based ranking (e.g., LexRank)

are used.

• Abstractive Summarization: Generates new sentences in human-like wording to

convey the main ideas. Transformer models are commonly used.

2. PlaintextParser (sumy.parsers.plaintext):

Parses raw text into a structured format suitable for summarization. It can read text

from strings or files.

3. Tokenizer (sumy.nlp.tokenizers):

Breaks text into sentences or words. Essential for analyzing text and improving

summarization accuracy.

4. LexRankSummarizer (sumy.summarizers.lex_rank):

Implements a graph-based algorithm to select important sentences for extractive

summarization. Produces concise summaries.

5. Transformers Pipeline:

High-level API for NLP tasks like summarization. Uses pre-trained models for

abstractive summarization, generating readable and coherent summaries.

6. Libraries:

• sumy – For extractive summarization.

• transformers – For abstractive summarization using transformer models.

• torch – Required backend for transformer models.

Code :-

Install necessary packages (for Jupyter/Colab)

!pip install sumy transformers torch

import nltk

nltk.download('punkt_tab')

from sumy.parsers.plaintext import PlaintextParser

from sumy.nlp.tokenizers import Tokenizer

from sumy.summarizers.lex_rank import LexRankSummarizer

from transformers import pipeline

FMIT2526179

Sample text

text = """ Artificial intelligence (AI) is the technology that allows machines to simulate human

intelligence, enabling them to learn, reason, problem-solve, and make decisions. AI systems

achieve this by analyzing vast amounts of data to identify patterns, understand language, and

recognize objects, similar to how humans think and behave. Key applications of AI include

natural language processing, computer vision, and autonomous systems, impacting various

industries by automating tasks and improving decision-making. The four common types of

Artificial Intelligence (AI), based on their functionality, are: Reactive Machines, Limited

Memory, Theory of Mind, and Self-aware AI. Reactive machines, like the IBM Deep Blue chess

program, act on the present situation but don't store memories. Limited Memory AI, such as self-

driving cars, can use past data to inform current decisions. Theory of Mind and Self-aware AI

are currently conceptual stages of AI that would possess human-like understanding of emotions

and consciousness, respectively.

"""

Extractive Summarization

def extractive_summary(text, num_sentences=3):

 parser = PlaintextParser.from_string(text, Tokenizer("english"))

 summarizer = LexRankSummarizer()

 summary = summarizer(parser.document, num_sentences)

 return ' '.join(str(sentence) for sentence in summary)

Abstractive Summarization

def abstractive_summary(text):

 summarizer = pipeline("summarization")

 summary = summarizer(text, max_length=100, min_length=25, do_sample=False)

 return summary[0]['summary_text']

Run both summarizations

print("===== Abstractive Summary =====")

print(abstractive_summary(text))

print("\n===== Extractive Summary =====")

print(extractive_summary(text))

Output :-

FMIT2526179

Practical No:06

Aim : Write a program to implement inverted index

Theory:-

1. Inverted Index:

An inverted index is a data structure widely used in search engines and information

retrieval systems. It maps each word (or term) to the list of documents in which it

appears. Unlike a normal index that stores documents sequentially, an inverted index

allows quick lookup of documents containing a specific word.

Example:

If the word "document" occurs in Doc1, Doc3, and Doc5, the inverted index will store.

2. defaultdict(set):

defaultdict is a special type of dictionary from Python’s collections module. When a

key is not present, it automatically initializes it with a default value. Using

defaultdict(set) allows us to automatically create an empty set for new words, which

helps in storing document IDs without duplicates.

Use case: Building inverted indexes, adjacency lists in graphs, or grouping items.

3. enumerate():

enumerate() is a built-in Python function that returns both the index and the value of

items in an iterable. It is useful to keep track of document IDs while looping over a list

of documents.

4. split() and add():

• split() breaks a sentence into words (tokens) using whitespace by default.

• add(doc_id) adds the current document ID to the set corresponding to a word,

avoiding duplicate entries.

Code :-

from collections import defaultdict

Function to create an inverted index

def create_inverted_index(documents):

 inverted_index = defaultdict(set)

 for doc_id, document in enumerate(documents):

 for word in document.split():

 inverted_index[word].add(doc_id)

 return inverted_index

FMIT2526179

Sample documents

documents = [

 "This is the first document.",

 "Second document is here.",

 "And this is the third document."

]

Create inverted index

inverted_index = create_inverted_index(documents)

Display the inverted index

print(dict(inverted_index))

Output :-

FMIT2526179

Practical No:07

Aim : Write a program to identify opinion spam in

user reviews.

Theory:-

1. Opinion Spam:

Opinion spam refers to fake or misleading reviews written to manipulate

the perception of a product or service. Spam reviews may exaggerate

benefits, provide false complaints, or include promotional messages.

Detecting spam helps users trust online reviews and improves overall

credibility.

Examples of spam indicators:

• Promotional phrases like "Buy now", "Limited offer", "Click here".

• Excessive use of exclamation marks or repeated words.

• Irrelevant content not related to the product.

2. any():

• any() is a built-in Python function that returns True if at least one

element of an iterable satisfies the condition.

• Here, it is used to check if any spam keyword exists in a review.

3. lower():

• Converts text to lowercase to ensure case-insensitive matching.

• For example, "BUY NOW" and "buy now" are treated the same.

4. Looping through reviews:

• Each review is checked against the list of spam keywords.

• If any spam keyword is present, it is flagged as "SPAM". Otherwise,

it is "GENUINE".

FMIT2526179

Code :-

List of sample reviews

reviews = [

 "This phone is amazing, battery lasts all day!",

 "Worst phone ever, waste of money!",

 "Buy this product now!!! Limited offer!!!",

 "Great value for money, highly recommended!"

]

List of spam keywords

spam_words = ["buy now", "limited offer", "click here", "free"]

Detect spam reviews

for r in reviews:

 if any(word in r.lower() for word in spam_words):

 print("SPAM:", r)

 else:

 print("GENUINE:", r)

Output:-

